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EQUILIBRIUM AND STABILITY OF THE SEPARATION SURFACE BETWEEN A 

LIQUID DIELECTRIC AND A PERFECTLY CONDUCTING LIQUID 

A. I. ~aakin UDC 531.51:538.4 

We consider a stationary container (Fig. i) completely filled with two perfectly im- 
miscible liquids, one of which is a perfect conductor, and the other a dielectric with a di- 
electric constant e. We assume that the container walls are perfect conductors, both liquids 
are at the same temperature, and the liquid-liquid interface has no points in common with the 
container walls. 

We introduce the following notation: ~1(~2) is the region occupied by the conductor (di- 
electric); S~($2) is the container wall adjoining the conductor (dielectric); F is the sur- 
face of separation of the liquids; m is a unit vector normal to F, directed into the region 
~ ; n i is a unit vector normal to S i and directed into the region ~ = ~, + g=; 0i is the 
density of t]ae conductor (dielectric); o is the surface tension in the liquid--liquid inter- 
face; ~ is the electric potential; r is the radius-vector to a point; and V i is the volume 
of region ~i. 

We assulxe that the electric field results from a potential difference U between S: and 
$2 and that the external forces have a potential ~i in ~i (i = i, 2). 

i. Condition for Equilibrium of Liquids in a Container 

In deriving the equilibrium conditions we start from the variational principle that the 
potential energy has a stationary value. The potential energy is 

2 
W = ~  d r + ~  n~d~---g-Zj~-g2a ~ c o n s t .  ( 1 . 1 )  

~=~ ~ r 

L e t  h ( r )  be  t h e  d i s p l a c e m e n t  o f  a l i q u i d  p a r t i c l e .  We a s s u m e  t h a t  h ( r )  i s  a t w i c e  c o n t i n -  
u o u s l y  d i f f e r e n t i a b l e  f u n c t i o n ,  c o n t i n u o u s  i n  ~ ,  h a v i n g  no  n o r m a l  c o m p o n e n t  on  S a nd  a c o n t i n -  
u o u s  n o r m a l  c o m p o n e n t  on F,  

div h(r) = 0 (r ~ ~); (1.2) 

h(r)n z = 0 (i = ~ ,2 ;  r ~ S = S 1 + S~); ( 1 . 3 )  

lira h(r l)n = lira h(r~)n 

~-,~ ~ . ~ r  (1.4) 
(r ~ F, r 1 ~ QI, r~ ~ ~ ) .  

We assume that U = const in virtual displacements of a liquid particle. This is possible 
only if there is an external energy source [i]. 

Using the formulas for the variations of the area of a surface and a unit vector normal 
to a surface [2] we obtain an expression for the first variation of the potential energy in 
the form 

2 

r ~ . 
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Fig. I 

where H is the mean curvature of the surface F, and N = h(r)n. By using the rule for Lagran- 
gian undetermined multipliers [for condition (1.2)] and the Gauss theorem, the necessary con- 
dition for (i.i) to be stationary is the vanishing of the expression 

S'  9 e [a~,21 2 !  
~ w ,  - ( -  _~H - [p] + ~ k-gT~ ] ) Ndr + ~ V (H~ + p~) hd~ (1.5) 

r . 5 = 1  " i  

f o r  a l l  h ( r )  w h i c h  s a t i s f y  E q s .  (1.3) and  (1.4). I n  Eq.  ( 1 . 5 )  [p ]  = P ,  - -  P= i s  t h e  d i s c o n -  
t i n u i t y  in the quantity p in passing through the surface F. Since h(r) is quite arbitrary, 
the relations 

- -  2r - -  [p] + (e/8~)(a~p/OtO" : 0 on F; ( 1 . 6 )  

I I i +  Pi  --= ciin ~i ( 1 . 7 )  

muse be satisfied, where the c i (i = i, 2) are constants. Using the equations of electro- 
statics and (1.6) and (I. 7) we obtain the following equations and boundary conditions describ- 
ing the equilibrium state of the system: 

2 ~ I I  - r  t i l l  - r  (e,'8a)(a~/an)"- + c = 0 on r ;  ( i .  8) 

.[ d Q = V ~  ( i = l ,  2); (1. 9) 
D i  

Aq) = 0  in ~z, q) ls, = 0 ,  r (1 .10)  

where c is a constant. 

2. Stability of the Equilibrium State of the Liquids 

By the stability of the equilibrium state of the liquids we understand the stability of 
the equilibrium shapes of the surface of separation F [3]. We assume that the principle of 
minimum potential energy holds [3], and therefore, except in special cases, the stability of 
the equilibrium state of the system can be determined from the sign of the second variation 
of the potential energy. 

By varying the first variation (1.5) and using the fact that Eqs. (1.8)-(1.10) hold in 
the equilibrium state and that ~i(r) (i = I, 2; r ~ Q) is a given local function, we obtain 

r ' 

where 
a=o_  ~ a[ll] 4 H  2 , 1 rr/O~p'~2. 

is the local perturbation of the electric potential ~ ; A F is the Laplace--Beltrami operator 
[2]; and K is the Gaussian curvature. The function N(r) (r ~ F) must satisfy the conservation 
of volume condition 

( N d r  = 0, (2 .2)  

The  f u n c t i o n  ~0(r) (r ~ ~=) m u s t  s a t i s f y  t h e  f o l ' l o w i n g  b o u n d a r y - v a l u e  which follows from (1.2). 
problem: 

A~ = 0 in fl~; (2.3) 
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0q~ N. r 1 7 6 1 6 2  on 

We i n t r o d u c e  the  n o r m a l i z a t i o n  c o n d i t i o n  fo r  N(r) 

2 N~dF = 1; 
r 

(2.4) 

(2.5) 

then the equilibrium state described by Eqs. (1.8)-(1.10) is stable if the minimum of the 
quadratic ftmctional (2.1) for conditions (2.2)-(2.5) is positive, and unstable otherwise. 

We note that if the quadratic functional (2.1) is bounded below on a set of twice con- 
tinuously differentiable functions N(r) satisfying conditions (2.2) and (2.5), its minimum 
on this set of functions is equal to the smallest eigenvalue , of the following boundary- 
value problem [4 ] : 

Oq~ O~ 
- -  ArN + aN + ~n On On + m =  ~N on F; (2 .6)  

.( NaY = 0 ,  j" N~dr = l ;  (2.7)  
][' r 

0r N, ( 2 . 8 )  Ar = o, ~ Is. = 0, ~ Iv - ~,~ 

where m is a constant. 

3. Solution of Certain Problems 

In investigating the stability of the equilibrium state of the problems considered be- 
low we use Eqs. (2.6)-(2.8), since for the cases under consideration it can be shown that the 
quadratic functional (2.1) is bounded below. 

i. We consider the two-dlmensional problem of the stability of a system consisting of 
two conductors separated by a dielectric (Fig. 2). The liquids are contained between two 
parallel electrodes with a constant potential difference U between them. We introduce the 
coordinate system shown in Fig. 2 and the subscripts i, 2, and 3 to denote, respectively, the 
upper and lower conductors and the dielectric. The gravitational field is g =--gey, where 
ey is a unit vector along the Oy axis. 

We introduce the following notation: ~ is the region occupied by the dielectric; FI(F2) 
is the surface of separation between the upper (lower) conductor and the dielectric; d is 
the thickness of the dielectric layer; n is a unit vector normal to r = F~ + F2, directed 
into the region occupied by the conductors; c i is the surface tension in Fi; and y = fi(x) 
is the surface of separation r i (i = i, 2). 

In the present case condition (1.8) on F i is not changed, but (1.9) is replaced by 

T 

+ t" f*(x) d x = O  (i----i, 2). lira 
T ~ o o  

--T 

We take conditions (i.i0) in the form 

A~=0 in ~, ~'rl 

It is clear that the equilibrium state of 

F 1 : 1 1 ~ 0 ,  r ~ : i 2 ~ d ,  

The system is stable if the minimum eigenvalue 
positive : 

, ~ Ocp 
-- 61Ar,Nt -k alN1 r ~ On 

8 0 ~  
a2Ar~N2 -k a,~N~ -k ~-~ On 

T 

T--~liml S Ni(x )  d x = O '  r~lim 
- - T  

= 0 ,  ~ ! r  ----U. 

t he  sys tem i s  d e s c r i b e d  by the  e q u a t i o n s  

q , =  Ey, E = g~/d. 

X, o f  the  f o l l o w i n g  b o u n d a r y - v a l u e  problem is  

0r 
On + ml = ~N1 on F1; (3 .1)  

0r an -}- ms = LN~ on F2; (3.2)  

T 

71 S (NZi(x) -l- N2(x) )dx  = t ;  ( 3 . 3 )  

--T 

o~ N~, ~ Ir ~ o~ (i = 1, 2), (3.4) 
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r2 --_--In . . . . . . .  ,~' 

Z2 

F i g .  2 

w h e r e  ax  = g(fla - -  0 x ) ,  a2 = g ( 0 a  - -  0 2 ) ,  a nd  mx a n d  m2 a r e  c o n s t a n t s .  The e i g e n f u n c t i o n s  o f  
t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 3 . 1 ) - ( 3 . 4 )  a r e  s i n  kx  and  cos  k x ,  w h e r e  k i s  t h e  wave  n u m b e r ,  
and therefore we seek the solution in the form 

N1 -- A1 sin kx, N2 ---- As sin kx. (3.5) 

Then the perturbation of the electric potential has the form 

~p = - -  (E/sh kd) s in kx(sh k(y - -  d) + sh ky). ( 3 . 6 )  

S u b s t i t u t i n g  ( 3 . 5 )  a n d  ( 3 . 6 )  i n t o  ( 3 . 1 )  a n d  ( 3 . 2 )  we f i n d  a h o m o g e n e o u s  l i n e a r  s y s t e m  
for the coefficients A, and A2. Equating the determinant of this system to zero we obtain 
an expression for the eigenvalue of the problem as a function of k, 

=.  ~,(k) - -  ( i /2)(F _ %/FS 4B), ( 3 . 7 )  
whe re 

F : olk 2 -~ a I ~- ff.2k 2 + as -- (e /2a)E'k  cth kd; 

B - -  (crzk z + az)(cr~k ~ 5- a2) - -  (e/4~x)E~k cth kd (r 2 + az + osk s + a~). 

It is clear that Eq. (3.7) is minimum for a certain k = k,. The critical value of the elec- 
tric field intensity is found from the condition 

~,  = ~,(k.) = 0. 

Let us analyze the limiting cases d § 0 and d + co for E = const. It can be seen that if 
the minus sign is taken in the expression in parentheses in (3.7), %(k) § as d + 0 for any 
fixed k; i.e., the closer together the conducting planes the less stable the system. Letting 
d -~ = we find 

- -  (t/2)[(rlk 2 + al + (I2k ~ + as - -  (s/2rt)E2k + ((ilk 2 + al - -  ~o- k2 - -  as)], 

for which 

where 

k* = mi n  L = m i n { m i n  L1, mi n  L2}, ( 3 . 8 )  
h h k 

Li = (hk s + at - -  (el4a) E~k(i = i ,  2). (3.9) 

It follows from (3.8) that as the distance between the conducting planes is increased, 
their effect on one another decreases, and in the limit the problem reduces to that of the 
stability of the plane boundary of separation between two semiinfinite regions, one of which 
is a perfect conductor and the other a dielectric, and the electric field at infinity is con- 
stant and perpendicular to the surface of separation. This problem was treated in [5]. The 
expressions for the critical value of the electric field obtained in [5] and from (3.9) agree: 

o 8~ 
E:  = - ~  ] / g [ p l  c, 

where [fl] is the discontinuity in density in passing through the surface of separation, and 
a is the surface tension in the surface of separation. 

2. The two-dimensional problem of the stability of a system consisting of two dielec- 
trics separated by a perfect conductor and located between two parallel electrodes can be 
treated in a similar way. The minimum eigenvalue of this problem is given by (3.8), where 

it is necessary to set 

~ --- (~ik 2 4- a i e~ p.zz,. 

here e i is the dielectric constant of the i-th dielectric, and E i is the electric field in- 
tensity in the i-th dielectric (i - i, 2). 
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where E = U/R. 
eration 

In conclusion, we note that this method can be used to investigate the stability of the 
equilibrium state of a system consisting of several alternating layers of liquid dielectrics 
and conductors. 

3. Let us consider the stability of a spherical drop of radius R carrying a charge Q and 
having negligible weight (Ig[fl]Ral << ~). We introduce the spherical coordinates r, al, a=, 
where r is the distance from the origin of the center of the drop; and a~ and == are, respec- 
tively, the azimuthal and polar angles. Clearly, the equilibrium state is described by the 
equations 

F : r ~ R ,  ~p = - -  UR/r ,  

where U = Q/r 

The boundary-value problem whose minimum elgenvalue is sought will have a form similar 
to (2.6)-(2.8), except that in the present case it is necessary to require that the perturba- 
tion of the electric potential ~ be bounded at infinity. The elgenfunctions of the boundary- 
value problem have the form 

Nij = A~j cos ~a~Pi (COS a.~) (3.  I0) 
( i  = 0 , 1 , 2 ,  . . . ;  ] = 0 ,  • t, • 2 . . . . .  • i ) ,  

where the P~! (cos an) are associated Legendre functions. The perturbation of the electric 
potential iis t given by 

.. l \ R  i . j 
, ~  = A v E  ( T ) cos ]ohP~ (cos r (3.11) 

Substituting (3.10) and (3.11) into (2.6) we have for the case under consid- 

~ i (i +- i )  2 ( i  - -  1)  Q2 
R 2 R'-' 4 ~ R  ~ 

(i = 0 ,  1, 2, . . . ) .  

We c o n s i d e r  p e r t u r b a t i o n s  w h i c h  l e a v e  t h e  c e n t e r  o f  m a s s  o f  t h e  d r o p  s t a t i o n a r y .  Then the 
values of X i for i = 0 and i = I are eliminated from consideration, and the condition for 
stability of a stationary charged drop takes the form 

Q2 < .16~t~(~R3. 

The charge Q = ~ is called the limiting Rayleigh charge [7]. By considering the analo- 
gous problem for the plane case the stability criterion can be obtained in the form 

Q= < 3~a~R, 

where Q is the charge per unit length of a charged filament. 

!o 
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